Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Virol ; 98(3): e0180223, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38334329

ABSTRACT

With a high incidence of acute kidney injury among hospitalized COVID-19 patients, considerable attention has been focussed on whether SARS-CoV-2 specifically targets kidney cells to directly impact renal function, or whether renal damage is primarily an indirect outcome. To date, several studies have utilized kidney organoids to understand the pathogenesis of COVID-19, revealing the ability for SARS-CoV-2 to predominantly infect cells of the proximal tubule (PT), with reduced infectivity following administration of soluble ACE2. However, the immaturity of standard human kidney organoids represents a significant hurdle, leaving the preferred SARS-CoV-2 processing pathway, existence of alternate viral receptors, and the effect of common hypertensive medications on the expression of ACE2 in the context of SARS-CoV-2 exposure incompletely understood. Utilizing a novel kidney organoid model with enhanced PT maturity, genetic- and drug-mediated inhibition of viral entry and processing factors confirmed the requirement for ACE2 for SARS-CoV-2 entry but showed that the virus can utilize dual viral spike protein processing pathways downstream of ACE2 receptor binding. These include TMPRSS- and CTSL/CTSB-mediated non-endosomal and endocytic pathways, with TMPRSS10 likely playing a more significant role in the non-endosomal pathway in renal cells than TMPRSS2. Finally, treatment with the antihypertensive ACE inhibitor, lisinopril, showed negligible impact on receptor expression or susceptibility of renal cells to infection. This study represents the first in-depth characterization of viral entry in stem cell-derived human kidney organoids with enhanced PTs, providing deeper insight into the renal implications of the ongoing COVID-19 pandemic. IMPORTANCE: Utilizing a human iPSC-derived kidney organoid model with improved proximal tubule (PT) maturity, we identified the mechanism of SARS-CoV-2 entry in renal cells, confirming ACE2 as the sole receptor and revealing redundancy in downstream cell surface TMPRSS- and endocytic Cathepsin-mediated pathways. In addition, these data address the implications of SARS-CoV-2 exposure in the setting of the commonly prescribed ACE-inhibitor, lisinopril, confirming its negligible impact on infection of kidney cells. Taken together, these results provide valuable insight into the mechanism of viral infection in the human kidney.


Subject(s)
Angiotensin-Converting Enzyme 2 , Kidney , Organoids , SARS-CoV-2 , Virus Internalization , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/virology , Kidney/cytology , Kidney/drug effects , Kidney/metabolism , Kidney/virology , Lisinopril/pharmacology , Lisinopril/metabolism , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Organoids/virology , Pandemics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/virology , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/virology , Receptors, Coronavirus/metabolism , Models, Biological , Serine Endopeptidases/metabolism , Endosomes/drug effects , Endosomes/metabolism , Endosomes/virology , Gene Expression Regulation/drug effects , Stem Cells/cytology
2.
Nat Protoc ; 18(11): 3229-3252, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37770563

ABSTRACT

Kidney organoids derived from human pluripotent stem cells (hPSCs) are now being used as models of renal disease and nephrotoxicity screening. However, the proximal tubules (PTs), which are responsible for most kidney reabsorption functions, remain immature in kidney organoids with limited expression of critical transporters essential for nephron functionality. Here, we describe a protocol for improved specification of nephron progenitors from hPSCs that results in kidney organoids with elongated proximalized nephrons displaying improved PT maturity compared with those generated using standard kidney organoid protocols. We also describe a methodology for assessing the functionality of the PTs within the organoids and visualizing maturation markers via immunofluorescence. Using these assays, PT-enhanced organoids display increased expression of a range of critical transporters, translating to improved functionality measured by substrate uptake and transport. This protocol consists of an extended (13 d) monolayer differentiation phase, during which time hPSCs are exposed to nephron progenitor maintenance media (CDBLY2), better emulating human metanephric progenitor specification in vivo. Following nephron progenitor specification, the cells are aggregated and cultured as a three-dimensional micromass on an air-liquid interface to facilitate further differentiation and segmentation into proximalized nephrons. Experience in culturing hPSCs is required to conduct this protocol and expertise in kidney organoid generation is advantageous.


Subject(s)
Cell Culture Techniques , Pluripotent Stem Cells , Humans , Cell Culture Techniques/methods , Kidney , Nephrons/metabolism , Cell Differentiation , Organoids
3.
Nat Commun ; 13(1): 5943, 2022 10 08.
Article in English | MEDLINE | ID: mdl-36209212

ABSTRACT

While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.


Subject(s)
COVID-19 , Communicable Diseases , Albumins/metabolism , Cell Differentiation/physiology , Cisplatin/metabolism , Cisplatin/pharmacology , Communicable Diseases/metabolism , Humans , Kidney , Nephrons/metabolism , Organoids/metabolism , SARS-CoV-2
4.
bioRxiv ; 2022 May 27.
Article in English | MEDLINE | ID: mdl-35665006

ABSTRACT

While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.

5.
Genome Med ; 14(1): 19, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35189942

ABSTRACT

BACKGROUND: While single-cell transcriptional profiling has greatly increased our capacity to interrogate biology, accurate cell classification within and between datasets is a key challenge. This is particularly so in pluripotent stem cell-derived organoids which represent a model of a developmental system. Here, clustering algorithms and selected marker genes can fail to accurately classify cellular identity while variation in analyses makes it difficult to meaningfully compare datasets. Kidney organoids provide a valuable resource to understand kidney development and disease. However, direct comparison of relative cellular composition between protocols has proved challenging. Hence, an unbiased approach for classifying cell identity is required. METHODS: The R package, scPred, was trained on multiple single cell RNA-seq datasets of human fetal kidney. A hierarchical model classified cellular subtypes into nephron, stroma and ureteric epithelial elements. This model, provided in the R package DevKidCC ( github.com/KidneyRegeneration/DevKidCC ), was then used to predict relative cell identity within published kidney organoid datasets generated using distinct cell lines and differentiation protocols, interrogating the impact of such variations. The package contains custom functions for the display of differential gene expression within cellular subtypes. RESULTS: DevKidCC was used to directly compare between distinct kidney organoid protocols, identifying differences in relative proportions of cell types at all hierarchical levels of the model and highlighting variations in stromal and unassigned cell types, nephron progenitor prevalence and relative maturation of individual epithelial segments. Of note, DevKidCC was able to distinguish distal nephron from ureteric epithelium, cell types with overlapping profiles that have previously confounded analyses. When applied to a variation in protocol via the addition of retinoic acid, DevKidCC identified a consequential depletion of nephron progenitors. CONCLUSIONS: The application of DevKidCC to kidney organoids reproducibly classifies component cellular identity within distinct single-cell datasets. The application of the tool is summarised in an interactive Shiny application, as are examples of the utility of in-built functions for data presentation. This tool will enable the consistent and rapid comparison of kidney organoid protocols, driving improvements in patterning to kidney endpoints and validating new approaches.


Subject(s)
Organoids , Pluripotent Stem Cells , Cell Differentiation/genetics , Humans , Kidney , Organogenesis/genetics , Pluripotent Stem Cells/metabolism
6.
Nat Rev Nephrol ; 18(1): 8-21, 2022 01.
Article in English | MEDLINE | ID: mdl-34594045

ABSTRACT

The lineage relationships of cells provide information about the origins of component cell types during development and repair as well as the source of aberrant cells during disease. Genetic approaches to lineage tracing applied in the mouse have revealed much about how the mammalian kidney forms, including the identification of key progenitors for the nephrons and stromal compartments. Inducible Cre systems have also facilitated lineage tracing studies in the postnatal animal that illustrate the changes in cellular fate that can occur during kidney injury. With the advent of single-cell transcriptional profiling and trajectory analyses, predictions of cellular relationships across development are now being made in model systems, such as the mouse, as well as in human fetal kidney. Importantly, these approaches provide predictions of lineage relationships rather than definitive evidence. Although genetic approaches to the study of lineage have not previously been possible in a human setting, the application of CRISPR-Cas9 gene editing of pluripotent stem cells is beginning to teach us about human lineage relationships.


Subject(s)
Gene Editing , Organogenesis , Animals , Cell Lineage/genetics , Kidney , Mammals/genetics , Mice , Nephrons
7.
Nat Mater ; 20(2): 260-271, 2021 02.
Article in English | MEDLINE | ID: mdl-33230326

ABSTRACT

Directed differentiation of human pluripotent stem cells to kidney organoids brings the prospect of drug screening, disease modelling and the generation of tissue for renal replacement. Currently, these applications are hampered by organoid variability, nephron immaturity, low throughput and limited scale. Here, we apply extrusion-based three-dimensional cellular bioprinting to deliver rapid and high-throughput generation of kidney organoids with highly reproducible cell number and viability. We demonstrate that manual organoid generation can be replaced by 6- or 96-well organoid bioprinting and evaluate the relative toxicity of aminoglycosides as a proof of concept for drug testing. In addition, three-dimensional bioprinting enables precise manipulation of biophysical properties, including organoid size, cell number and conformation, with modification of organoid conformation substantially increasing nephron yield per starting cell number. This facilitates the manufacture of uniformly patterned kidney tissue sheets with functional proximal tubular segments. Hence, automated extrusion-based bioprinting for kidney organoid production delivers improvements in throughput, quality control, scale and structure, facilitating in vitro and in vivo applications of stem cell-derived human kidney tissue.


Subject(s)
Bioprinting , Kidney Tubules, Proximal/metabolism , Organoids/metabolism , Pluripotent Stem Cells/metabolism , Humans , Kidney Tubules, Proximal/cytology , Organoids/cytology , Pluripotent Stem Cells/cytology
8.
Cell Stem Cell ; 28(4): 671-684.e6, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33378647

ABSTRACT

During development, distinct progenitors contribute to the nephrons versus the ureteric epithelium of the kidney. Indeed, previous human pluripotent stem-cell-derived models of kidney tissue either contain nephrons or pattern specifically to the ureteric epithelium. By re-analyzing the transcriptional distinction between distal nephron and ureteric epithelium in human fetal kidney, we show here that, while existing nephron-containing kidney organoids contain distal nephron epithelium and no ureteric epithelium, this distal nephron segment alone displays significant in vitro plasticity and can adopt a ureteric epithelial tip identity when isolated and cultured in defined conditions. "Induced" ureteric epithelium cultures can be cryopreserved, serially passaged without loss of identity, and transitioned toward a collecting duct fate. Cultures harboring loss-of-function mutations in PKHD1 also recapitulate the cystic phenotype associated with autosomal recessive polycystic kidney disease.


Subject(s)
Organogenesis , Organoids , Cell Differentiation , Epithelium , Humans , Kidney , Nephrons
9.
J Am Soc Nephrol ; 30(10): 1811-1823, 2019 10.
Article in English | MEDLINE | ID: mdl-31492807

ABSTRACT

BACKGROUND: The generation of reporter lines for cell identity, lineage, and physiologic state has provided a powerful tool in advancing the dissection of mouse kidney morphogenesis at a molecular level. Although use of this approach is not an option for studying human development in vivo, its application in human induced pluripotent stem cells (iPSCs) is now feasible. METHODS: We used CRISPR/Cas9 gene editing to generate ten fluorescence reporter iPSC lines designed to identify nephron progenitors, podocytes, proximal and distal nephron, and ureteric epithelium. Directed differentiation to kidney organoids was performed according to published protocols. Using immunofluorescence and live confocal microscopy, flow cytometry, and cell sorting techniques, we investigated organoid patterning and reporter expression characteristics. RESULTS: Each iPSC reporter line formed well patterned kidney organoids. All reporter lines showed congruence of endogenous gene and protein expression, enabling isolation and characterization of kidney cell types of interest. We also demonstrated successful application of reporter lines for time-lapse imaging and mouse transplantation experiments. CONCLUSIONS: We generated, validated, and applied a suite of fluorescence iPSC reporter lines for the study of morphogenesis within human kidney organoids. This fluorescent iPSC reporter toolbox enables the visualization and isolation of key populations in forming kidney organoids, facilitating a range of applications, including cellular isolation, time-lapse imaging, protocol optimization, and lineage-tracing approaches. These tools offer promise for enhancing our understanding of this model system and its correspondence with human kidney morphogenesis.


Subject(s)
Induced Pluripotent Stem Cells , Kidney/cytology , Organoids , Animals , Female , Mice , Organogenesis
10.
Kidney Int ; 95(5): 1153-1166, 2019 05.
Article in English | MEDLINE | ID: mdl-30827514

ABSTRACT

All nephrons in the mammalian kidney arise from a transient nephron progenitor population that is lost close to the time of birth. The generation of new nephron progenitors and their maintenance in culture are central to the success of kidney regenerative strategies. Using a lentiviral screening approach, we previously generated a human induced nephron progenitor-like state in vitro using a pool of six transcription factors. Here, we sought to develop a more efficient approach for direct reprogramming of human cells that could be applied in vivo. PiggyBac transposons are a non-viral integrating gene delivery system that is suitable for in vivo use and allows for simultaneous delivery of multiple genes. Using an inducible piggyBac transposon system, we optimized a protocol for the direct reprogramming of HK2 cells to induced nephron progenitor-like cells with expression of only 3 transcription factors (SNAI2, EYA1, and SIX1). Culture in conditions supportive of the nephron progenitor state further increased the expression of nephron progenitor genes. The refined protocol was then applied to primary human renal epithelial cells, which integrated into developing nephron structures in vitro and in vivo. Such inducible reprogramming to nephron progenitor-like cells could facilitate direct cellular reprogramming for kidney regeneration.


Subject(s)
Cellular Reprogramming/genetics , DNA Transposable Elements/genetics , Genetic Engineering/methods , Nephrons/physiology , Regeneration/genetics , Cells, Cultured , Gene Transfer Techniques , Homeodomain Proteins/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/genetics , Primary Cell Culture , Protein Tyrosine Phosphatases/genetics , Snail Family Transcription Factors/genetics
11.
EMBO Rep ; 20(4)2019 04.
Article in English | MEDLINE | ID: mdl-30858339

ABSTRACT

Nephron formation continues throughout kidney morphogenesis in both mice and humans. Lineage tracing studies in mice identified a self-renewing Six2-expressing nephron progenitor population able to give rise to the full complement of nephrons throughout kidney morphogenesis. To investigate the origin of nephrons within human pluripotent stem cell-derived kidney organoids, we performed a similar fate-mapping analysis of the SIX2-expressing lineage in induced pluripotent stem cell (iPSC)-derived kidney organoids to explore the feasibility of investigating lineage relationships in differentiating iPSCs in vitro Using CRISPR/Cas9 gene-edited lineage reporter lines, we show that SIX2-expressing cells give rise to nephron epithelial cell types but not to presumptive ureteric epithelium. The use of an inducible (CreERT2) line revealed a declining capacity for SIX2+ cells to contribute to nephron formation over time, but retention of nephron-forming capacity if provided an exogenous WNT signal. Hence, while human iPSC-derived kidney tissue appears to maintain lineage relationships previously identified in developing mouse kidney, unlike the developing kidney in vivo, kidney organoids lack a nephron progenitor niche capable of both self-renewal and ongoing nephrogenesis.


Subject(s)
Chromosome Mapping , Gene Expression Profiling , Genes, Reporter , Nephrons/embryology , Nephrons/metabolism , Organogenesis/genetics , Biomarkers , CRISPR-Cas Systems , Cell Culture Techniques , Cell Differentiation , Homeodomain Proteins/genetics , Humans , Nerve Tissue Proteins/genetics , Organoids , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Single-Cell Analysis
12.
Stem Cell Reports ; 10(3): 751-765, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29503086

ABSTRACT

Human pluripotent stem cell (hPSC)-derived kidney organoids may facilitate disease modeling and the generation of tissue for renal replacement. Long-term application, however, will require transferability between hPSC lines and significant improvements in organ maturation. A key question is whether time or a patent vasculature is required for ongoing morphogenesis. Here, we show that hPSC-derived kidney organoids, derived in fully defined medium conditions and in the absence of any exogenous vascular endothelial growth factor, develop host-derived vascularization. In vivo imaging of organoids under the kidney capsule confirms functional glomerular perfusion as well as connection to pre-existing vascular networks in the organoids. Wide-field electron microscopy demonstrates that transplantation results in formation of a glomerular basement membrane, fenestrated endothelial cells, and podocyte foot processes. Furthermore, compared with non-transplanted organoids, polarization and segmental specialization of tubular epithelium are observed. These data demonstrate that functional vascularization is required for progressive morphogenesis of human kidney organoids.


Subject(s)
Kidney Glomerulus/physiology , Kidney Tubules/physiology , Organoids/physiology , Pluripotent Stem Cells/physiology , Animals , Cell Differentiation/physiology , Endothelial Cells/physiology , Humans , Kidney Transplantation/methods , Mice , Morphogenesis/physiology , Podocytes/physiology
13.
Development ; 144(6): 1087-1096, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28174247

ABSTRACT

Human pluripotent stem cells, after directed differentiation in vitro, can spontaneously generate complex tissues via self-organisation of the component cells. Self-organisation can also reform embryonic organ structure after tissue disruption. It has previously been demonstrated that dissociated embryonic kidneys can recreate component epithelial and mesenchymal relationships sufficient to allow continued kidney morphogenesis. Here, we investigate the timing and underlying mechanisms driving self-organisation after dissociation of the embryonic kidney using time-lapse imaging, high-resolution confocal analyses and mathematical modelling. Organotypic self-organisation sufficient for nephron initiation was observed within a 24 h period. This involved cell movement, with structure emerging after the clustering of ureteric epithelial cells, a process consistent with models of random cell movement with preferential cell adhesion. Ureteric epithelialisation rapidly followed the formation of ureteric cell clusters with the reformation of nephron-forming niches representing a later event. Disruption of P-cadherin interactions was seen to impair this ureteric epithelial cell clustering without affecting epithelial maturation. This understanding could facilitate improved regulation of patterning within organoids and facilitate kidney engineering approaches guided by cell-cell self-organisation.


Subject(s)
Epithelial Cells/cytology , Kidney/embryology , Ureter/cytology , Animals , Cadherins/metabolism , Cell Adhesion , Cell Aggregation , Cell Differentiation , Cell Lineage , Cell Movement , Computer Simulation , Epithelial Cells/metabolism , Mice , Models, Biological , Morphogenesis , Time Factors
14.
Curr Opin Genet Dev ; 34: 10-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26177475

ABSTRACT

The direct reprogramming of one cell fate to another represents an attractive option for the generation of specific endpoints for cellular therapy. This appears to require both the reactivation of critical transcription factor regulatory networks and chromatin remodelling. The direct reprogramming of mature renal epithelial cell lines to a nephron progenitor state has been reported. However, our limited knowledge of the optimal growth conditions to maintain this state remains a challenge for their therapeutic application. Here we examine whether nephron progenitors as an endpoint of direct reprogramming have been suitably defined and whether alternative options for reprogramming to kidney exist.


Subject(s)
Cell Differentiation/genetics , Cellular Reprogramming/genetics , Nephrons/growth & development , Transcription Factors/genetics , Humans , Kidney/growth & development , Kidney/metabolism , Nephrons/metabolism , Stem Cells/metabolism
15.
Semin Nephrol ; 34(4): 462-80, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25217274

ABSTRACT

Recent years have challenged the view that adult somatic cells reach a state of terminal differentiation. Although the ultimate example of this, somatic cell nuclear transfer, has not proven feasible in human beings, dedifferentiation of mature cell types to a more primitive state, direct reprogramming from one mature state to another, and the reprogramming of any adult cell type to a pluripotent state via enforced expression of key transcription factors now all have been shown. The implications of these findings for kidney disease include the re-creation of key renal cell types from more readily available and expandable somatic cell sources. The feasibility of such an approach recently was shown with the dedifferentiation of proximal tubule cells to nephrogenic mesenchyme. In this review, we examine the technical and clinical challenges that remain to such an approach and how new reprogramming approaches also may be useful for kidney disease.


Subject(s)
Cell Dedifferentiation , Cellular Reprogramming , Kidney/cytology , Gene Expression Regulation , Humans , Kidney Tubules, Proximal/cytology , Mesenchymal Stem Cells/cytology
16.
J Am Soc Nephrol ; 24(9): 1424-34, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23766537

ABSTRACT

Direct reprogramming involves the enforced re-expression of key transcription factors to redefine a cellular state. The nephron progenitor population of the embryonic kidney gives rise to all cells within the nephron other than the collecting duct through a mesenchyme-to-epithelial transition, but this population is exhausted around the time of birth. Here, we sought to identify the conditions under which adult proximal tubule cells could be directly transcriptionally reprogrammed to nephron progenitors. Using a combinatorial screen for lineage-instructive transcription factors, we identified a pool of six genes (SIX1, SIX2, OSR1, EYA1, HOXA11, and SNAI2) that activated a network of genes consistent with a cap mesenchyme/nephron progenitor phenotype in the adult proximal tubule (HK2) cell line. Consistent with these reprogrammed cells being nephron progenitors, we observed differential contribution of the reprogrammed population into the Six2(+) nephron progenitor fields of an embryonic kidney explant. Dereplication of the pool suggested that SNAI2 can suppress E-CADHERIN, presumably assisting in the epithelial-to-mesenchymal transition (EMT) required to form nephron progenitors. However, neither TGFß-induced EMT nor SNAI2 overexpression alone was sufficient to create this phenotype, suggesting that additional factors are required. In conclusion, these results suggest that reinitiation of kidney development from a population of adult cells by generating embryonic progenitors may be feasible, opening the way for additional cellular and bioengineering approaches to renal repair and regeneration.


Subject(s)
Cell Differentiation/physiology , Kidney Tubules, Proximal/cytology , Nephrons/embryology , Stem Cells/cytology , Transcription Factors/physiology , Transcription, Genetic/genetics , Cadherins/genetics , Cadherins/physiology , Epithelial-Mesenchymal Transition/physiology , Genetic Testing/methods , HEK293 Cells , Homeodomain Proteins/genetics , Homeodomain Proteins/physiology , Humans , Kidney Tubules, Proximal/physiology , Nephrons/cytology , Phenotype , Snail Family Transcription Factors , Transcription Factors/genetics
17.
J Biol Chem ; 286(30): 26638-51, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21636576

ABSTRACT

Amino acid uptake in the intestine and kidney is mediated by a variety of amino acid transporters. To understand the role of epithelial neutral amino acid uptake in whole body homeostasis, we analyzed mice lacking the apical broad-spectrum neutral (0) amino acid transporter B(0)AT1 (Slc6a19). A general neutral aminoaciduria was observed similar to human Hartnup disorder which is caused by mutations in SLC6A19. Na(+)-dependent uptake of neutral amino acids into the intestine and renal brush-border membrane vesicles was abolished. No compensatory increase of peptide transport or other neutral amino acid transporters was detected. Mice lacking B(0)AT1 showed a reduced body weight. When adapted to a standard 20% protein diet, B(0)AT1-deficient mice lost body weight rapidly on diets containing 6 or 40% protein. Secretion of insulin in response to food ingestion after fasting was blunted. In the intestine, amino acid signaling to the mammalian target of rapamycin (mTOR) pathway was reduced, whereas the GCN2/ATF4 stress response pathway was activated, indicating amino acid deprivation in epithelial cells. The results demonstrate that epithelial amino acid uptake is essential for optimal growth and body weight regulation.


Subject(s)
Amino Acid Transport Systems, Neutral/metabolism , Body Weight/physiology , Eating/physiology , Epithelial Cells/metabolism , Signal Transduction/physiology , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Amino Acid Transport Systems, Neutral/genetics , Animals , Dietary Proteins , Hartnup Disease/genetics , Hartnup Disease/metabolism , Humans , Insulin/genetics , Insulin/metabolism , Insulin Secretion , Mice , Mice, Mutant Strains , Mutation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
18.
J Clin Invest ; 121(1): 446-53, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21123949

ABSTRACT

Solute carrier family 1, member 1 (SLC1A1; also known as EAAT3 and EAAC1) is the major epithelial transporter of glutamate and aspartate in the kidneys and intestines of rodents. Within the brain, SLC1A1 serves as the predominant neuronal glutamate transporter and buffers the synaptic release of the excitatory neurotransmitter glutamate within the interneuronal synaptic cleft. Recent studies have also revealed that polymorphisms in SLC1A1 are associated with obsessive-compulsive disorder (OCD) in early-onset patient cohorts. Here we report that SLC1A1 mutations leading to substitution of arginine to tryptophan at position 445 (R445W) and deletion of isoleucine at position 395 (I395del) cause human dicarboxylic aminoaciduria, an autosomal recessive disorder of urinary glutamate and aspartate transport that can be associated with mental retardation. These mutations of conserved residues impeded or abrogated glutamate and cysteine transport by SLC1A1 and led to near-absent surface expression in a canine kidney cell line. These findings provide evidence that SLC1A1 is the major renal transporter of glutamate and aspartate in humans and implicate SLC1A1 in the pathogenesis of some neurological disorders.


Subject(s)
Excitatory Amino Acid Transporter 3/genetics , Mutation , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Line , DNA Mutational Analysis , Dogs , Excitatory Amino Acid Transporter 3/chemistry , Excitatory Amino Acid Transporter 3/metabolism , Female , Genes, Recessive , Humans , In Vitro Techniques , Intellectual Disability/genetics , Intellectual Disability/metabolism , Kidney/metabolism , Male , Models, Biological , Models, Molecular , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Oocytes/metabolism , Pedigree , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Renal Aminoacidurias/genetics , Renal Aminoacidurias/metabolism , Sequence Deletion , Sequence Homology, Amino Acid , Xenopus laevis
19.
Biochem J ; 428(3): 397-407, 2010 May 27.
Article in English | MEDLINE | ID: mdl-20377526

ABSTRACT

Renal maturation occurs post-natally in many species and reabsorption capacity at birth can vary substantially from the mature kidney. However, little is known regarding the maturation of amino acid transport mechanisms, despite the well-known physiological state of developmental iminoglycinuria. Commonly seen during early infancy, developmental iminoglycinuria is a transient version of the persistent inherited form of the disorder, referred to as iminoglycinuria, and manifests as a urinary hyperexcretion of proline, hydroxyproline and glycine. The transporters involved in developmental iminoglycinuria and their involvement in the improvement of renal reabsorption capacity remain unknown. qPCR (quantitative real-time PCR) and Western blot analysis in developing mouse kidney revealed that the expression of Slc6a18, Slc6a19, Slc6a20a and Slc36a2 was lower at birth (approx. 3.4-, 5.0-, 2.4- and 3.0-fold less than adult kidney by qPCR respectively) and increased during development. Furthermore, immunofluorescence confocal microscopy demonstrated the absence of apical expression of Slc6a18, Slc6a19, Slc6a20a and the auxiliary protein collectrin in kidneys of mice at birth. This correlated with the detection of iminoglycinuria during the first week of life. Iminoglycinuria subsided (proline reduction preceded glycine) in the second week of life, which correlated with an increase in the expression of Slc6a19 and Slc6a20a. Mice achieved an adult imino acid and glycine excretion profile by the fourth week, at which time the expression level of all transporters was comparable with adult mice. In conclusion, these results demonstrate the delayed expression and maturation of Slc6a18, Slc6a19, Slc6a20a and Slc36a2 in neonatal mice and thus the molecular mechanism of developmental iminoglycinuria.


Subject(s)
Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Transport Systems, Neutral/metabolism , Glycine/metabolism , Imino Acids/metabolism , Kidney/metabolism , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Transport Systems, Neutral/genetics , Animals , Biological Transport , Glycine/urine , Imino Acids/urine , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Xenopus laevis
20.
J Clin Invest ; 118(12): 3881-92, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19033659

ABSTRACT

Iminoglycinuria (IG) is an autosomal recessive abnormality of renal transport of glycine and the imino acids proline and hydroxyproline, but the specific genetic defect(s) have not been determined. Similarly, although the related disorder hyperglycinuria (HG) without iminoaciduria has been attributed to heterozygosity of a putative defective glycine, proline, and hydroxyproline transporter, confirming the underlying genetic defect(s) has been difficult. Here we applied a candidate gene sequencing approach in 7 families first identified through newborn IG screening programs. Both inheritance and functional studies identified the gene encoding the proton amino acid transporter SLC36A2 (PAT2) as the major gene responsible for IG in these families, and its inheritance was consistent with a classical semidominant pattern in which 2 inherited nonfunctional alleles conferred the IG phenotype, while 1 nonfunctional allele was sufficient to confer the HG phenotype. Mutations in SLC36A2 that retained residual transport activity resulted in the IG phenotype when combined with mutations in the gene encoding the imino acid transporter SLC6A20 (IMINO). Additional mutations were identified in the genes encoding the putative glycine transporter SLC6A18 (XT2) and the neutral amino acid transporter SLC6A19 (B0AT1) in families with either IG or HG, suggesting that mutations in the genes encoding these transporters may also contribute to these phenotypes. In summary, although recognized as apparently simple Mendelian disorders, IG and HG exhibit complex molecular explanations depending on a major gene and accompanying modifier genes.


Subject(s)
Amino Acid Transport Disorders, Inborn/genetics , Amino Acid Transport Systems, Neutral/genetics , Glycine Plasma Membrane Transport Proteins/genetics , Mutation , Pedigree , Penetrance , Alleles , Amino Acid Transport Disorders, Inborn/urine , Amino Acid Transport Systems, Neutral/metabolism , Family , Female , Glycine Plasma Membrane Transport Proteins/metabolism , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...